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cal sensing of DNAwas accomplished by electrodeposited PEDOT on the electrode
surface and incorporation of Nile blue (NB) as redox active intercalator into DNA. Herein, above modified
electrode called as PEDOT/DNA/NB composite electrode. PEDOT/DNA/NB composite electrode exhibited well
defined redox peak at −0.35 V (Ag/AgCl) corresponding to NB. The composite electrode surface coverage (Γ)
and ΔEp were compared with PEDOT/NB and DNA/NB modified electrode. Atomic Force microscopy (AFM),
and cyclic voltammetry (CV) were used to characterize the PEDOT/DNA/NB composite electrode. The
composite electrode was exhibited as surface confined redox process in neutral pH. The composite electrode
was found to be pH dependent. The composite electrode exhibited catalytic property towards reduction of
hydrogen peroxide (H2O2). The composite electrode was utilized to amperometric study and its response
towards H2O2 detection was less than 6 s and the detection limit was 0.1 μM. Moreover, we tested PEDOT/
DNA/NB composite electrode to electrocatalytic reduction of cytochrome c (Cyt c).

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction
The electrostatic and topographic property of biological macromole-
cules such as DNA complexes can be exploited for the templated
generation and assembly of supramolecular aggregates of organic and
inorganic buildingblocks [1,2]. ThepowerofDNAas amolecular template
is enhanced by our ability to synthesize virtually any DNA sequence by
automatedmethods, and to amplify any DNA sequence frommicroscopic
to macroscopic quantities by means of polymerase chain reaction (PCR).
Therefore, DNA is particularly suitable to serve as a construction
component in nano sciences [3]. The use of DNA as template for
spontaneous assemblies of cationic cyanine dye [4], fullerene derivatives
[5], CdS semiconductor nanoparticles [6], silver nanowires [7], and gold
nanowires [8–10] to formsupramolecular structures hasbeenextensively
reported. In all cases, the negatively charged phosphate backbone of the
DNA double helix has been employed to interact electrostatically with
inversely charged species presented in solution. Because metal nano-
particles are always wrapped by charged organic layer, the metal
nanowires formed by such metal nanoparticles for electronic intercon-
nections of nanometer-scale electronics devices should be resistive [7].
The conductive polymers may provide another option for this problem.

Conductive polymers (CPs) have been extensively studied because
of their highly electrical conductivity and mechanical flexibility, their
ability to be electrochemically switched between electronically
insulating and conducting states. It has been well established that
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disorder is one of the limiting factors in electron/hole transport in
doped conducting polymers [11] and the incorporation of the DNA and
probe oligonucleotide into a conducting polymer is attractive because
of electrochemical and an electronic properties of conjugated
polymers are a sensitive function of their environment, so that
hybridization of the incorporated probes would be expected to
perturb the electrochemical response of the polymer [12–21]. Also,
DNA has a unique secondary structure where a stack of π electrons in
the base pair promoted the possibility of DNA to form a “molecular
conduit” [22]. Wrapping of a conducting polymer on the DNA surface
might be useful to connect the molecular wires [23] and these hybrids
might play an important role to bridge the human–machine interface.

Among the conducting polymers, CPs, poly(3,4-ethylene-
dioxythiophene), or PEDOT, has been reported to exhibit good stability
after incorporation of the biological material and to get enhanced
electrical signal [24–25]. Since, PEDOT modified conducting polymer
films have a high regularity of the polymeric chain due to the lack of
α–β linkages between the monomers, a high stability of the p-doped
state and a high conductivity [24–26].

Recently, Fang et al. [27] used ferrocene functionalised polythio-
pheneas transducer for lable freeDNAdetection. Shinkai and coworkers
[28] prepared PEDOT/DNA/teracationic porphyrin (TMpyP) composite
and concluded that DNA is useful as a scaffold to arrange redox active
couples in one dimensional matrix. Mouffouk andHiggins [29] reported
selective electrochemical response to hybridization based on oligonu-
cleotide-functionalised PEDOT coated micro electrodes. Moreover, Goto
et al. [30] prepared PEDOT polymer by using DNA as a liquid crystal
electrolyte and the prepared polymer exhibited optically active.
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Fig. 2. CVs of PEDOT/DNA/NB composite electrode at different scan rates: scan rate:
(a) 0.01 (b) 0.05 (c) 0.1 (d) 0.2 (e) 0.3 (V/s): Inset: scan rate vs Ipa/Ipc. Electrolyte;
0.2 M PBS solution, pH 7.
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Nile blue A (NB), one of phenoxazine dyes, is a well-known
electroactive molecule. It has been used as a mediator for electron
transfer with a two-electron redox conversion to modify solid
electrodes and used for electrocatalytic applications [31–33]. The
incorporation of phenothiazine [34] and phenoxazine dyes [15,35]
into DNA modified electrode have been reported. Recently, Hu et al.
[35] studied the interaction between Nile blue and immobilized
single- or double-stranded DNA and its application in electrochemical
recognition and calculated binding constants. But, they have not been
used electrode to electrocatalytic application.

Cytochrome c (Cyt c) plays a major role in electron transport in
biochemical transformations. It is a water-soluble heme protein that
exists in the cytosol between the inner and outer membranes of
mitochondria. Under physiological conditions, it transfers electrons
between cytochrome c reductase and cytochrome c oxidase, which
are both embedded in the mitochondrial membrane. Reversible
electron transfer between electrode and redox proteins immobilized
in films provides a basis for constructing biosensors, biomedical
devices, and enzymatic bioreactors [36]. Many reports have described
the electrochemistry of cytochrome c in terms of modifier electrode
and modifier-protein interactions [37–40]. Many promoters, such as
some small organic compounds [41–42], small peptides [43] and
conductive polymers [44] have been found to promote the direct
electrochemistry of cytochrome c on the electrode surface. Various
dyes associated with electrode surfaces have been proven to align
cytochrome c and to facilitate interfacial electron transfer [45–46].

In the present work, we report that the amplified electrochemical
sensing of DNA is accomplished by electrodeposited PEDOT on the
electrode surfaces and incorporation of Nile blue (NB) as redox active
intercalator into DNA. This modified composite electrode is utilized
towards catalytic reduction of hydrogen peroxide. To the best of our
knowledge, there is no literature available on elsewhere.

2. Experimental

2.1. Reagents and solutions

EDOT, DNA, andNBwere purchased fromAldrich. All reagentswere
of analytical grade and usedwithout any further purification. Solutions
were prepared with doubly-distilled water. High purity nitrogen was
used for deaeration. The buffer and sample solutionswere purgedwith
highly purified nitrogen for at least 10 min prior to the experiments.
Nitrogen atmosphere was maintained over the solutions during the
experiments to prevent the reentry of atmospheric oxygen.

.sp
Fig. 1. CVs of (a) PEDOT/DNA/NB composite (b) PEDOT//NB (c)DNA/NB electrode.
Electrolyte; 0.2 M PBS solution, pH:7: scan rate: 50 mV/s.
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2.2. Apparatus

Electrochemical experiments were performed with CH Instruments
(Model CHI-400) using CHI-750 potentiostat. Glassy carbon electrode
(geometric area 0.07 cm−2) obtained from BAS served as the working
electrode. Pt wire was used as counter electrode and Ag/AgCl with the
saturated KCl solution used as reference electrode. All the potentials
given in this paper were referred Ag/AgCl (saturated KCl solution).

2.3. Preparation of PEDOT/DNA/NB composite electrode

Prior to modification, glassy carbon electrode (GCE) was polished
with 0.05 μm alumina on Buehler felt pads and then ultrasonically
cleaned for about a minute in water. Finally, the electrode was washed
thoroughly with double distilled water and used. After being cleaned,
the polished GC surface was subjected to electrochemical deposition of
poly(3,4-ethylenedioxythiophene) (PEDOT)film (three cycleswithin the
potential range −0.5 to 1.1 V) from the solution containing 0.01M EDOT,
and 0.1 M LiClO4 potentiodynamically. The 20 μl of 2 mg DNA solution
was spread over the PEDOTmodified electrode and dried to get the film
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Fig. 3. CVs of different pH (a) 7 (b) 5 (c) 3 (d) 1. Scan rate: 50 mV/s. Inset: pH vs E°′.
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by hot air oven for 30 min. Then PEDOT/DNA modified electrode was
dipped into PBS solution containing 1mMNB for 10min. This electrode
called as PEDOT/DNA/NB composite electrode. PEDOT/DNA/NB compo-
site electrodewas thoroughlywashed furtherwith extra purewater and
stored in the PBS for further studies.

3. Results and discussions

3.1. Electrochemical behavior of PEDOT/DNA/NB composite electrode

The PEDOT/DNA/NB composite electrode shows a well-defined
reversible voltammogram corresponding to the redox peak of NB at
−0.35 V (Ag/AgCl) (Fig. 1a). The observed redox peak has good
agreement with previously reported NB modified electrode [31–
Fig. 4. Tapping mode AFM image of (a) DNA/NB ITO glass electrode (b) PE
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33,35]. The peak-to-peak separation (ΔEp) was typically small
(30 mV), although not zero, as expected for a reversible ideal case;
the ratio of anodic and cathodic peak current Ipa/Ipc was close to
unity. On the other hand, surface coverage of PEDOT/NB and DNA/NB
were 4.106×10−11 mol cm−2 and 7.7×10−11 mol cm−2 respectively.
The ΔEp of PEDOT/NB and DNA/NB electrodes were 74 and 40,
respectively. This higher ΔEp and lower surface coverage (Γ) in
PEDOT/NB and DNA/NB compared with PEDOT/DNA/NB composite
electrode might be due to the absence of electrostatic binding with
NB in PEDOT/NB electrode and lower surface coverage in DNA/NB
might be due to less conductivity. Higher surface coverage and
lesser ΔEp of PEDOT/DNA/NB composite electrode is due to strong
electrostatic binding of NB on the backbone of DNA that electro-
statically interacted with PEDOT conducting polymer. The formal
DOT/NB and (c) PEDOT/DNA/NB composite film coated in ITO glass.
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Fig. 6. Amperometric response to H2O2 at PEDOT/DNA/NB composite electrode. Applied
potential −0.35 V. Rotation rate: 750 rpm.
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potential of composite electrode shifted by 30 mV in the negative
direction compared to DNA/NB electrode. Such behavior is char-
acteristic of electrostatic interaction of NB with adsorbed ssDNA [47].
Here, similar type of characteristic property is expected PEDOT/DNA/
NB composite electrode.

As shown, the anodic and cathodic peakswere rather broad and the
magnitude of the peak current was significantly lower than that
observed on the PEDOT/DNA/NB composite electrode. The enhanced
peak current of NB in composite electrode is due to the presence of
DNA and PEDOTand gives good stability. Since the anodic and cathodic
peak currents gradually decrease during the subsequent sweeps,
possibly due to the leaching of NB from the PEDOT and DNA surface.
But composite electrode provides good electrode stability. Because,
due to high conductivity PEDOT act as good matrix [24,25,48,49].

3.2. Electrochemical characterization of PEDOT/DNA/NB composite
electrode

Fig. 2 shows the cyclic voltammograms of PEDOT/DNA/NB
composite electrode in a deaerated PBS solution at different scan
rates. A redox couple with well-defined peak appeared. The ratio of
anodic to cathodic peak currents was nearly unity and a plot of {inset
of Fig. 2 (−0.34 V)} peak current as a function of scan rate was linear as
expected for surface confined species [50] and the charge transfer was
fast in the coating [51]. The separation of peak potentials, ΔEp was
55 mV. ΔEp was close to 2.303/RT (or 59/n mV at 25 °C) [50].

We have estimated, the apparent surface coverage, Γ by using Eq. (1)

C =Q=nFAe: ð1Þ

Where Q was charged from the area under the PEDOT/DNA/NB
composite electrode oxidation peak corrected for the base line (at the
scan rate of 10 mV s−1); A area of the electrode: 0.07 cm2, F: Faraday
constant. In the present case, the calculated surface coverage (Γ) was
1.28×10−10 mol cm−2 for assuming a two electron process.

Fig. 3 displays the pH-dependent voltammetric response of
PEDOT/DNA/NB composite electrode. In order to ascertain this, the
voltammetric responses of PEDOT/DNA/NB electrodewere obtained in
the solutions of different pH varying from 1.0 to 9. As can be seen in
Fig. 3, the formal potential of the redox couples were pH dependent
and it negatively shifted by increasing the solution pH. The pH
dependence suggests that the electroactive sites on the PEDOT/DNA/
NB composite electrode behave as true surface active groups
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Fig. 5. PEDOT/DNA/NB composite electrode response towards different mM of [H2O2]
(a) 0 (b) 0.02 (c) 0.04 (d) 0.06 (e) 0.08 (f) 0.1 (g) 0.12 (h) 0.14: scan rate: 50 mV/s. Inset:
bare GC electrode in the presence of 0.14 mM of H2O2 solution.
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influenced by specific solution conditions and not shielded within
the electrode interior. The plot of E1/2 vs pH yields straight line with a
slope of 57 mV per unit change in solution pH as shown in the inset of
Fig. 3 which was very close to the anticipated Nernstian value of
59 mV for processes in which equal numbers of electrons and protons
were involved in the electrode reactions.

3.3. Characterization of surface morphology using AFM

Fig. 4 shows the Tapping mode AFM images of PEDOT/NB, DNA/NB
and PEDOT/DNA/NB electrode. PEDOT/DNA/NB (Fig. 4c) electrode
shows that NB uniformly distributed on the surface of PEDOT–DNA
film and thickness of film decreased compared to DNA/NB electrode.
Since, PEDOT–DNA film provides facile matrix to immobilize dye
molecules. Fig. 4a and b show AFM images of DNA/NB and PEDOT/NB
electrode, respectively and observed that NB was randomly distrib-
uted and exhibited rough surface.

3.4. Electrocatalytic reduction of H2O2

Electroanalytical application of the PEDOT/DNA/NB composite
electrode was studied for the analysis of H2O2. The electrochemical
responses to the reduction of H2O2 was shown in Fig. 5, where the
current response was recorded at the bare (inset of Fig. 5) and PEDOT/
DNA/NB composite electrode in the absence and presence of H2O2. As
onecan see at thebare electrode (curve b) the reductionofH2O2 requires
a higher potential and also gives a very poor response. In contrast, at the
modified electrode with the addition of H2O2 to the solution, change in
the cyclic voltammogram occurs with an increase in cathodic current
and a concomitant decrease in the anodic current (curves d and e). The
catalytic reduction occurs at a much lesser potential of −0.37 V at the
PEDOT/DNA/NB composite electrode. A significant improvement in the
magnitude of the cathodic current at a lower potential reflects the high
electrocatalytic activity of the PEDOT/DNA/NB composite electrode.

3.5. Amperometry

Quantitative determination of H2O2 was also carried out amper-
ometrically in a stirred solution of PBS solution maintained at pH 7.0.
Fig. 6 depicts the typical amperometric response of the PEDOT/DNA/
NB composite electrode recorded at a applied potential of −0.35 V for
successive addition of 1 mM H2O2 solution. A rapid and well-defined
responsewas observed for each addition of H2O2. The sensor responds
quickly to the concentration of H2O2, a steady state current being
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Fig. 7. PEDOT/DNA/NB composite electrode response to (a) pH 7 PBS solution (b) 0.1 mM
Cyt c solution. Scan rate: 50 mV/s.

17Z.-W. Chen et al. / Bioelectrochemistry 75 (2009) 13–18

m

reached within less than 6 s. Under optimum conditions, the modified
electrode showed a linear response to H2O2 in the concentration range
of 6 μM to 0.2 mM and detection limit (S/N=3) was found to be 0.1 μM
and sensitivity of 10 μA/mM for H2O2 at the composite electrode. The
results indicate that the modified electrode maintained a good
sensitivity and had a stable amperometric response under hydro-
dynamic condition.

3.6. Electrocatalytic reductionof Cyt c at PEDOT/DNA/NBcomposite electrode

Fig. 7 demonstrates the electrochemical behavior of Cyt c at PEDOT/
DNA/NB composite electrode. When Cyt c was added to the PBS, an
increase in the reductionpeak currentofNBandacorrespondingdecrease
in the oxidation peak current was observed. Such behavior of electrode
indicates mediated electrocatalytic reduction reaction. The heteroge-
neous electron transfer betweenCyt c and conventional electrodes is very
slowowing to its extended three-dimensional structure, inaccessibility of
the electroactive center, adsorptive denaturation, unfavorable orienta-
tions and conformational equilibria of protein at electrodes [52]. As well
known, Cyt c in pH 7.0 buffers shows no response at bare GC electrode,
thus, the NB in PEDOT/DNA/NB composite electrode might have great
effect on the kinetics of the electrode reaction for Cyt c. It shows that the
NB can electrocatalyze the reduction of Cyt c (FeIII) in neutral media
through the electron transfer reaction at the heterogeneous boundary
layer NB and Cyt c. Similar electrocatalytic reduction of cytochrome cwas
carried out using methylen blue modified electrode [45].

4. Conclusion

PEDOT/DNA/NB composite electrode was prepared by dip coating
method. PEDOT/DNA/NB composite electrode exhibited well defined
redox peak at −0.35 V (Ag/AgCl) corresponding to NB. The composite
electrode was compared with PEDOT/NB and DNA/NB modified
electrode and an enhanced peak current and reduced ΔEp were found.
The composite electrode was exhibited surface confined redox process
in neutral pH. The composite electrode was found pH dependent. The
composite electrode exhibited catalytic property towards reduction of
hydrogen peroxide. The composite electrode was utilized to ampero-
metric study and its response towards H2O2 detectionwas less than 6 s
and the detection limit was 0.1 μM. Moreover, we have utilized PEDOT/
DNA/NB composite electrode to electrocatalytic reduction of Cyt c.
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